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ABSTRACT

This report presents tank test data for a rectangular flapped hydrofoil mounted

to the carriage by a single strut. Tests were carried out separately with flaps

oscillating in smooth water, flaps fixed in regular waves, and then various com-

binations of conditions with flaps oscillating in regular waves. The separate

effects of flap, and wave on the force and moment coefficients for the hydrofoil

were obtained, and compared with the results when both flap and wave were

cycled together.
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1 jINTRODUCTION

The purpose of the test program described in this report was to experimentally

determine the effects of wave and flap motions and possible intermittent venti-

lation on hydrofoil forces and moments. In order to do this, the program was

divided into four test phases:

a. Tests in smooth water with flaps cycled at various frequencies.

b. Tests in regular waves with flaps fixed, running in both head and

following seas.

c. Tests in regulp.r waves with flaps cycled at various frequencies, in

both head and following seas.

d. Tests with flaps driven through a 1/2 cycle at high frequency in smooth

water, to determine the effect of sudden flap deflections on the hydro-

foil forces and moments.

By comparison of the results of a, b and c it was possible to isolate and

evaluate the force and moment variations caused by wave action and the vari-

ations caused by flap motion. The individual wave profiles were measured and

correlated with the hydrofoil forces and moments.

The hydrofoil tested had an NACA 16-309 section and was capable of being

fitted with four different flap sizes. It was the same hydrofoil model used in

the tests reported in Reference 1. The measurements obtained during unsteady

flow conditions were therefore compared with the results given in Reference 1.



Data is presented in coefficient form (in both tables and graphs) in this

report. In certain cases time histories have been produced to bring out salient

points and to show the effect of having two forcing functions (wave and flap) of

different fra.quencies.
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2 J MODEL DESCRIHON AND INSTRUMENTATION

2.1 MODEL DESCRIPTION

The model used in this test program was the same as that used in tests reported

in Reference 1; consequently, only a brief description will be given here. It

exhibited a span of 24 inches, a chord of 4.0 inches, and a rectangular planform

with a NACA 16-309 section. The model was fitted with simple flaps as follows:

Flap Configuration c/c bf/b

1 0.3 0.6

2 0.3 0.8

3 0.2 0.6

4 0.2 0.8

The single center strut was enclosed in a double ogive fairing which did not touch

the foil or strut, and thus strut drag was eliminated from the test results.

Figure 1 shows the model with Flap Configuration No. 3. Figure 2 is a schematic

drawing of the model and balances, and also shows the method of flap cycling.

The strain gages were waterproofed with Dijell wax, which was melted first

and then brushed on. The gages were then coated with Ten-X waterproofing

compound for mechanical protection.

2.2 INSTRUMENTATION

Forces were measured by means of strain gage balances mounted at the top of

the strut (Figure 1). Data was recorded on a Consolidated Electrodynamics

3



Corp. (CEC) oscillograph, Type 5-114-P3-26. The circuit incorporated a CEC

3-kc amplifier with an output calibration circuit, and a variable attenuation and

galvanometer damping circuit. This enabled amplifier output to be maintained

within 1%.

Model velocity was obtained from a carriage-mounted photocell, whose

signal on the oscillograph trace was deflected by interrupters placed every five

feet along the carriage rails.

Wave contours were measured during each test by a sonic-type wave re-

corder developed and constructed by the University of Minnesota-St. Anthony

Falls Hydraulics Laboratory (Reference 3). The wave recorder was mounted

on the carriage to measure wave amplitudes at the foil 1/4-chord point.

Flap position was recorded continuously by a strain gage balance connected

to the flap bell-crank. No readings were taken of flap forces and moments.

A 16-mm Eyemo motion picture camera was mounted on the carriage to

document possible intermittent cavitation or ventilation on the foil and strut.

4



TEST PROCEDURE

The test program was conducted in the 300-foot General Dynamics/Convair

hydrodynamics towing tank (Reference 2). The model was tested at constant

velocities between 18 and 32 ft/sec. approximately. It was run at fixed depths

(1/4-chord point to smooth water level) of between 3 and 5 inches, and with fixed

wing angles of attack between -5 and + 10 deg. Flap oscillation frequencies which

were constant for any given run, varied between 0. 5 and 7.0 cycles per second.

Regular waves from the paddle-type wavemaker, again constant for any run,

were varied between 2 inches and 4 inches in height, and between 3.5 and 8. 25

ft. in length (i.e., 20:1 to 24:1 approx.)

Flap angles were varied through the range -8 to + 8 degrees during cycling

tests, between -5 and + 10 degrees for flaps fixed in wave tests, and between 0

and + 16 degrees for 1/2 cycle tests. Positive values denote flaps deflected

downward.

The procedure when testing with flaps cycling in waves was to choose a flap

frequency, wave size and model velocity such that the frequency of encounter

with a wave was almost the same as the frequency of oscillation of the flap.

Usually, two runs were carried out under identical conditions in order to get

instantaneous phase relationships between flap down and wave peak between

r radians lag, progressing through the "in-phase" condition to r radians lead.

5j



METHOD OF ANALYSIS

4.1 TESTS IN SMOOTH WATER WITH FLAPS CYCLED
AT VARIOUS FREQUENCIES

The purpose of this part of the program was to determine the frequency response

of the system by sinusoidally moving the flaps.

Data from tests covered in Reference 1, with flap cycling frequencies of

0. 50 to 1. 66 cycles per second, were combined with more recent data with flap

cycling frequencies between 3.0 and 7.0 cycles per second.

Average values of maximum and minimum trace readings for lift, drag,

pitching moment and flap deflection were read from the oscillograph traces.

The force and moment equations were programmed into the IBM 704 computer

and CL , CD9 and CM for the foil were read out.

The lift, drag, and moment traces were read at close intervals (i. e., as

time histories) throughout the force cycles in order to determine the true maxi-

mum and minimum values of drag. Maximum and minimum drag could not be

determined from inspection of the oscillograph traces because of the effects of

balance interactions.

Phase relationships of the force coefficients were read as lead (positive) or

lag (negative) in radians of the maximum values to the maximum flap down posi-

tion. They were obtained by measuring from the oscillograph trace the time

distance between the flap down and the force peak, and arithmetically solving

for by the equation

(P t
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where TWas the time distance from flap down to the next flap down (flap cycling

period). If the force peak occurred later than maximum flap down position it

was defined as lagging.

The frequency of flap oscillation was obtained from the oscillograph trace

by measuring the time interval between successive peaks. Then

= - rads/sec.f- T 1

Force coefficient and flap amplitudes were defined as 1/2 (max. value - min.

value). There was a tendency for the flapping mechanism to deflect slightly

under heavy load, thus causing slight indentations in the sine traces of the almost

simple harmonic motion of the flaps. However, the frequency of oscillation held

very steady and was easily read from the traces.

4.2 TESTS IN REGULAR WAVES WITH FLAPS FIXED -
HEAD AND FOLLOWING SEAS

The data was analyzed in the same manner as for flaps cycling in smooth water

(described previously). Phase relationships of the force coefficients were read

as lead, or lag, of the maximum values to the wave peak. Waves varied in size

slightly during the course of each run, and thus average values of amplitude and

phase angles were read from the oscillograph traces.

The frequency of wave encounter was obtained from the oscillograph trace

by measuring the time interval between successive peaks, T2 then,

2ir= radsisec.

Force . oefficient and wave amplitudes were defined as 1/2 (max. value - min.

value). Wave length was determined by solving the following simultaneous

equations: The frequency of wave encounter

w= (- (c ( s1)

where (+) indicates head seas and (-) indicates following seas.

8
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The velocity of a trochoidal wave

V 2w (2)

a. Head Sea Case

From Equation (1)

w 2w cc

Wave length 
2wV 2

w

2
2w 'K

2 2

K 2w 4 rK 2 U zX

2 K2 7r U 2UO vk

g--r +g9

22 2

( 2U Ig I g/2U QiJ + 4 2 U(T g + )9+1
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b. Following Sea Case

From Equation (1)

2rV2

K g

22

2__g U "-__'

2r 2 Aik U00~

9 (U 00 4ir'

Consequently, the expression for wavelength is the same for both head and follow-

ing seas. Take second term in equation at the bottom of page 9 as positive for

head seas and negative for following seas.

4.3 TESTS IN REGULAR WAVES WITH FLAPS
CYCLING - HEAD AND FOLLOWING SEAS

Data was read from the oscillograph traces in exactly the same way as for the

two previous cases. Phase relationships of the force coefficients were read as

lead or lag of the maximum values to the wave peak. But in addition there was

(at any time during a run) an instantaneous phase relationship between the flap

position and the wave. This was defined as a lead if the maximum flap-down

position occurred 7r radians or less ahead of the wave peak. In order to obtain

the phase in radians, the reference was taken as the encounter period of the

wave in seconds - the same as for the force coefficient phase angles.

Because of the varying phase relationship between the flap and the wave, it

was not possible to average the waves to take account of variations in wave size,

and all values had to be read as close as possible to the times at which flap-wave

phases were equal to + 7r, + ir/2, 0, - 7r/2 and - r. This meant that the results

10 'i



for flaps cycling in waves could not be so accurate as for flaps fixed in waves.

However, errors caused by this source were very much diminished by the fact

that the flap is by far the more powerful forcing function.

Wave lengths were again calculated as for the flaps fixed in waves case.

4.4 DATA ANALYSIS ON TIME BASIS

The purpose of this part of the analysis was to get force and moment coefficients

from 1) Steady-state data, flaps fixed in smooth water; 2) Data for flaps fixed in

waves; and 3) Data for flaps cycling in smooth water. These three sets of data

were added together in a time history and compared with the measured total as

given by tests with flaps cycling in waves.

Because of the difference in frequency of the two forcing functions (wave and

flap), there will be a "beating" of the resultant force and moment coefficients;

i. e., the amplitudes of the oscillations will rise and fall periodically over a

number of oscillations. The period of this "beating" will be of longer time dura-

tion as the frequencies of the two forcing functions come closer together. This

effect was clearly observed on the oscillograph traces. See Figure 67 for a

typical record, and Figures 34 through 37 for plots of the envelopes of CL with

flap phase.

At any time from t = Wave amplitude AKt = AK x sin vt.

Flap Deflection = 6ft =6f x sin (wft + 01)

Adding wave and flap effects

C 
L

A~CL M-)X A Kx sin I V t+ qL

+ CL  x sin + ) +

Similar expressions can be derived for ACD and ACM(t). Values of force and

moment amplitude ratio and phase relationships are read from Figures 3 through

20. 1
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5 j DISCUSSION OF TEST RESULTS

5.1 GENERAL

The results of the tests are presented in coefficient form in Tables 2 through

17. CL and CD were obtained normal and parallel to the water surface respec-

tively, and CM was measured at the 1/4-chord point. Total drag measurements

were not corrected for interference effects due to the presence of the center

strut, as this was found to be very small. (See Figure 25 of Reference 1.)

There was no evidence of cavitation or ventilation in any of the tests. The

approximate test variables for which data has been obtained are summarized in

Table 1. Not all combinations of the variables were tested; consequently, Table

1 must be read in conjunction with Tables 2 through 17.

5.2 FLAPS CYCLING IN SMOOTH WATER

Graphs have been plotted of

A -- and OL2 (the phase of maximum CL to the flap-down position) against
A6f

a base of flap cycling frequency in radians/sec. Similar graphs have been plotted

for

ACD 2  ACM2
and

A6f A6f

Figures 3 through 8 show these graphs for all four flap configurations.
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It will be noted that ACL

A 6f

tends to increase with increase of flap cycling frequency, and this may mean

that there is no flow separation at the higher frequencies. However, this pos-

sibility was not investigated.

With regard to
ACD2

&6f

it will be noted that the flap cycling tests of Reference 1 (with the lowest cycling

rates) were performed at foil angle of attack of zero degrees, whereas the later

cycling tests at higher cycling rates were done at angle of attack of + 5 degrees.

Now the CD - a curves for flaps fixed in smooth water are "trough" shaped

with minimums for the different flap angles occurring at approximately a = 0.
At a = 50 , CD increases progressively when 6f is moved from negative,

through zero, to positive. However, at a = 0 , CD may be greater at 6f -50,

for example, than it is at 6f = 00. This is probably the cause of the scatter in

the tests points for
ACD 2

A6f

and drag phase angle at the lowest flap frequencies.

Force and moment phase lag increases with increase of cycling frequency,

and would probably reach a value of 7r at very high frequencies.

Average values of CL 2 1 CD 2 and CM 2 were plotted against cycling fre-

quency (Figures 21 through 25) and were found to be close (within limits of

experimental error) to the steady-state values for a = 5. However, at , = 0 °

values of CD2 tended to be negative. No explanation is offered for this, but the

data was carefully checked and is felt to be good. Negative drags did not occur

in any other test.
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5.3 FLAPS FIXED IN REGULAR WAVES

Graphs have been plotted of the non-dimensional coefficient

A CL 1

and the phase of maximum CL to the wave peak, against a base of frequency of

wave encounter in radians/sec. Similar graphs have been plotted for
ACD 1

_-:1 (5)\A K 2C>

and

ACM1 C

A K  (2

These are shown in Figures 9 through 20 for all 4 flap configurations, and for

both head and following sea conditions.

It was observed that there was a pronounced difference in the phase relation-

ships between head and following seas. Because of the orbital velocity of the

wave, the maximum lift occurs approximately r/2 radians ahead of the wave

peak in a head sea, and approximately 7r/2 radians after the wave peak in a fol-

lowing sea. This is because of the change of effective angle of attack on the foil

as it passes through the waves.

The frequency of wave encounter was defined as

K7r (U. E V radians/sec.^K

The positive sign is taken with head seas, and the negative sign with following

seas. Other experimenters, notably those discussed in Reference 5, have used

a non-dimensional reduced frequency, which is useful where comparisons have

to be made.
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This is defined as:

V c

Reduced frequency =-

°r "U V
C. Ix (

For head sea tests with flaps fixedthe same wave was used throughout, and

therefore the reduced frequency remained almost the same even though the

velocity changed. Consequently, it was not possible to use this form for graphi-

cal presentation of the results.

The oscillatory lift parameter decreases slowly with increase of v for all

four flap configurations in a head sea, and increases slowly for all configurations

in a following sea. This is in agreement with Reference 4, Page 10, where it

is noted that the unsteady lift effects are decreased in head seas with increasing

velocity for the same range of wave conditions.

In general, it appears that the angle of attack of the foil, and flap angle,

have little effect on the oscillatory lift coefficient in waves. (See Figures 9,

10, 15, 16.) Head sea tests were carried out ata= -50 , 08, 50, 10° , and

6f -50, 00, 5, 10° , whereas following sea tests were all carried out at

a 50 and 6f = 100.

The oscillatory drag parameter decreases slowly with increase of v for all

four flap configurations in a head sea, but is almost constant for all configura-

tions in a following sea.

Drag is out of phase with lift in head seas. It has been suggested that this

may be caused by leading edge suction. If the suction force increases with in-

crease of instantaneous angle of attack in head seas as the foil approaches the
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wave peak. then it would be expected to increase commensurately with increase

of lift. This suction force would therefore act in complete opposition to the

drag because of lift, and would tend to shift the phase angle of the drag relative

to the wave.

In Reference 6, J. M. Wetzell gives another explanation of how lift and drag

become out of phase, and also how it is possible for even negative drags to

occur. To quote Reference 6, with explanations for Reference 4 that are

applicable to this present report: "The lift and drag were measured perpen-

dicular and parallel to the still water surface. As the instantaneous angle of

attack was increased (up-wash) by the orbital velocity of the wave, the true lift

and drag with respect to the instantaneous velocity vector also increased. How-

ever, the resultant force vector tilted forward, thereby increasing the measured

lift and decreasing the measured drag. A downwash effect would decrease the

measured lift and increase the measured drag. Thus, for quasi-steady condi-

tions the lift and drag should be out of phase about 180 degrees, measurements

in head seas (Figures 6 and 10 of Reference 4) indicate about 230 degrees. It

may also be possible to obtain negative drags if the instantaneous angle of attack

is sufficient to tilt the force vector forward of the vertical for part of the cycle,

and if the steady drag is low. It should be mentioned that the drag reduction in

an upwash can be expected only in a wetted, non-separated flow." These re-

marks are directly applicable to this present report, as flow was fully wetted,

and lift and drag were also measured perpendicular and parallel to the water

surface. In these tests lift and drag were out of phase in head seas by about

220 degrees.

There is considerable scatter in the test points for the oscillatory pitching

moment parameter plotted against frequency of wave encounter in head seas,

but there appears to be very little change in this parameter as frequency is in-

creased (Figures 13, 14). In a following sea the oscillatory pitching moment

parameter increases with increase of frequency for all four flap configurations

(Figures 19, 20). The pitching moment oscillograph traces follow the lift traces
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closely, and the maximum and minimum pitching moments occur at nearly the

same phase angles as the lift maximum and minimums. In head seas the pitch-

ing moment leads the lift slightly, and in following seas it lags slightly.

Figures 26, 27, 28 and 29 show mean values of force coefficients for tests

with flaps fixed in waves, for both head and following seas. Results indicate

that within the range of frequencies tested there is slight decrease in both lift

and drag as frequency of encounter increases. This is true for all positions of

the wing and flap settings, and for all flap configurations, but particularly for

Configurations 3 and 4.

Figure 30 shows mean values of pitching moment coefficient for all flap

configurations in both head and following seas. Within the limits of experimental

error there is very little change of mean pitching moment coefficients from the

steady-state values of Reference 1.

5.4 FLAPS CYCLING IN REGULAR WAVES

The plotting of data from these tests is complicated because there are two forc-

ing functions (flap and wave) of different frequencies. The forces and moments

not only have phase relationships with the wave, but different phase relationships

with the flap. Actually, all measured phases (which are instantaneous in this

case) have been referred to the wave as the basic forcing function. The oscil-

latory force and moment coefficients would vary with both frequency of wave

encounter and frequency of flap oscillation, as well as with the phase relation-

ship of the flap to the wave. Consequently, the best way to analyze this data is

in terms of continuous time histories (described in Paragraph 5.5). However,

to cover all of the data in this way would be exceedingly lengthy and time con-

suming, and there are various other ways to plot in order to summarize and

bring out the salient points. Figures 31, 32 and 33 present plots of average CL ,

CD and CM respectively, against a combined frequency of flap and wave in

radians per second. In general, there is a slight falling off in C as frequency
L

increases, CD remains sensibly constant and CM becomes slightly more
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negative. The points for head and following seas fall very close to the same

curves.

In Figures 34 through 37 instantaneous maximum and minimum lift coeffi-

cients have been plotted against the phase of the flap to the wave, for all flap

configurations in head and following seas. The curves are really envelopes of

the AC L and show the harmonic "beating" of AC L with change of phase between

the two forcing functions. This effect can also be seen in the representative

oscillograph trace in Figure 67, where there is a large frequency difference

between the flap cycle and the wave cycle. It will be noted that in head seas

ACL is a maximum where the flap-down position leads the wave peak by r/2

radians, and that in following seas AC L is a maximum where the flap lags the

wave by 7r/2. This would be expected since these are the points where there is

maximum disturbance input.

Figures 38, 39, 40, and 41 present curves of instantaneous maximum and

minimum drag coefficients plotted against the phase of the flap to the wave, for

all flap configurations in head and following seas. These curves do not exhibit

so clearly as those of lift coefficient the change of drag with phase change be-

tween the forcing functions. Figures 42 and 43 show that there is little change

of maximum instantaneous CM when plotted against the phase of the flap to the

wave, in head or following seas.

Figure 54 is a summary plot that was prepared of an oscillatory lift param-

eter against frequency in radians per second. With this plot it is possible to

compare on one sheet the tests with flaps cycling in waves, flaps cycling in

smooth water and flaps fixed in waves for all four flap configurations in both

head and following seas:

a. For flaps cycling in waves, the oscillatory lift parameter was taken as

ACL32 C

xi
K f
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which brings in the effects of both flap and wave, and the frequency factor was

taken as radians/sec.

b. For flaps cycling in smooth water, and flaps fixed in waves, a com-

bined oscillatory lift parameter was taken as

6CL + AC L 2

A K.- f A2

which was again plotted against the combined frequency factor rv7 •f radians/

see.

Values of ACL 3 were read from the Summary Tables 14, 15, 16, and 17 as

maximum values, at maximum flap down leading the wave peak by 7r/2 radians

for head seas, and lagging by r/2 radians in following seas.

Figures 54 shows that for each flap configuration the oscillatory lift param-

eters for the different cases fall on the same curve for both head and following

seas. Thus, the separate effects of flap and wave can be evaluated and then

added together vectorially to give the combined effects with both flap and wave

acting together.

Figure 55 is a summary diagram of flap and wave effectiveness in lift for

all flap configurations in both head and following seas. It can be seen that for

all flap configurations except No. 3 the flap is a very much more powerful forc-

ing function than the wave and could easily cancel changes in CL caused by run-

ning through waves. Both Figures 54 and 55 show that much more flap effec-

tiveness is derived from increase of flap chord than from increase of flap span.

Phase relationships for flaps cycling in waves are presented in Figures 62

through 66. For Flap Configurations 1 and 2 in head seas, Figures 62 and 63

show that drag lags lift and that pitching moment lags drag fairly consistently

by about 20 degrees each for all phase relationships between flap and wave. As

the phase of flap to wave progresses from lag to lead, the phases of lift, drag

and pitching moment become more leading. However, when the flap is in phase
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with the wave, forces and moments are all lagging the wave. At a higher fre-

quency of wave encounter and flap oscillation all forces and moments are more

lagging to the wave than at a lower frequency. Considering Figures 64 and 65,

for Flap Configurations 3 and 4 in head seas, roughly the same conclusions

apply, but there is much more scatter in the data.

In following seas, the scatter was very bad, and made graph plotting impos-

sible except for Flap Configuration 2 which had the largest flap. Figure 66

shows that Flap Configuration 2 in a following sea exhibited approximately the

same characteristics as in a head sea.

5.5 TIME HISTORY ANALYSIS TO ISOLATE EFFECTS OF
FLAP MOTIONS FROM EFFECTS OF WAVE MOTIONS

All comparisons were made with Flap Configuration No. 1 (cf/c = .3, bf/b = .6),

but a variety of conditions was chosen to show that the method works for head

and following seas, and for different instantaneous phase relationships between

flap and wave. The results are shown in Figures 44 through 53.

Figures 44, 45 and 46 present lift, drag and pitching moment variation

respectively, for Test Run 13191 through two complete cycles starting with 7r/2

radians flap lag and finishing with flap and wave in phase. The wave frequency

of encounter was 4.72 cycles/sec. The wave height (trough to crest) was 1.73

inches and its length, 3.66 ft. The flap frequency was 6.30 cycles/sec. This

was a following sea case.

CL variation with flaps cycling in waves agrees very closely with CL ob-

tained by adding 1) components caused by flaps fixed in calm water (Reference 1),

2) components caused by flaps cycling in smooth water, and 3) components caused

by flaps fixed in waves. Agreement is found in amplitude of oscillation, period

and reduction in amplitude (i. e., beating) on going from flap "lag" to "in phase"

conditions.
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With CD it was found that there was good agreement in amplitude variation

and period of oscillation, but the actual values of CD obtained by adding up

separate components were an almost constant amount less than the values for

flaps cycling in waves. This appears to be the result of an increase in the

basic CD of the foil in going from steady to unsteady flow conditions. The same

remarks apply to CM , which was an almost constant amount more positive when

made up of component parts.

Figure 47 shows the separate components of AC resulting from flap and
L

AC L caused by the wave for Run No. 13191. It can be seen that the flap is a

very much more powerful forcing function than the wave, and could easily can-

cel out the variations of CL caused by the wave.

Figures 48, 49 and 50 present lift, drag and pitching moment variation

respectively for Run No. 13157 at ir/2 radians flap lead. Only one oscillation

has been plotted since the two forcing functions were very nearly of the same

frequency, and "beating" would be evident over a larger number of waves. The

wave frequency of encounter was 3. 42 cycles/sec. The wave height (trough to

crest) was 3. 77 inches and its length, 8. 31 ft. The flap frequency was 3. 22

cycles/sec. This was a head sea case.

There was good agreement for both lift and drag, but pitching moment was

more positive by an almost constant amount when made up of component

parts. Figures 51 and 53 present lift, drag and pitching moment variation for

Test Run 13154, with flap lagging the wave by r radians. Figure 52 and 53 pre-

sent lift, drag and pitching moment variation for the same run, but with flap

and wave in phase. The wave frequency of encounter was 7.88 cycles/sec. The

wave height (trough to crest) was 1. 51 inches and its length, 3. 65 ft. The flap

frequency was 7.35 cycles/sec. This again was a head sea case.

There was very close agreement in CL variation for both flap and wave,

"out-of-phase" and "in-phase," and not much change in the actual values. CD

again was a constant amount low when made up of component parts, for both
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out-of-phase and in-phase conditions. CM showed very good agreement, both
for actual values and for dimensions of the wave form.

It is felt that this detailed plotting of a small part of the experimental data

obtained in the test program shows fairly conclusively that it is possible to

isolate and evaluate the effects of flap motions from the effects of wave motion

when running with flaps cycling in waves - if test results from flaps cycling in

smooth water and flaps fixed in waves are available separately. It also shows

that if a complicated wave of several superimposed sine waves is built up, it

should be possible to obtain flap motions that would give a constant running CL.

This information would be useful to the hydrofoil boat designer but will require

further analysis.

5.6 COMPARISONS WITH REFERENCE 1
SMOOTH WATER TESTS

Some of the figures that show comparisons with Reference 1 (flaps fixed in

smooth water) were discussed previously in this section of the report. These

are the plots of average force and moment coefficients against frequency of

disturbance in radians per second (Figures 21 through 33). In general, these

average force and moment coefficients show very good agreement, within the

limits of experimental error, with the steady-state values. Sometimes average

lift and drag coefficients are a little lower than steady state, and average pitch-

ing moment coefficients tend to be a little more negative. Figures 56 and 57

summarize some of the this data for average force coefficients. Figure 56

shows average values of lift coefficients for all four flap configurations at a

constant angle of attack of 50 , and for flaps cycling in waves, flaps cycling in

smooth water, and flaps fixed in waves (plotted against frequency in radians per

second). The steady-state value of CL is 0.34. Figure 57 shows average values

of drag coefficients at constant a = 50 . The steady-state value of CD is 0.024.

No particular trends are discernable from the curves, but it appears that there

is not much change in the force coefficients from the steady-state value within

the range of frequencies tested.
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For the tests of flaps fixed in waves there was sufficient coverage of angle

of attack to plot CL vs. a and CD vs. a. These are compared with the steady-

state curves from Reference 1, at a flap deflection of 10 degrees down in

Figures 58 and 59. Two wave cases were evaluated: one where the wave en-

counter rate was 3 waves per second, and the other at 5 waves per second.

Test points were plotted for head and following seas. The average force coef-

ficients for flaps fixed in waves fall slightly below the steady-state curves, but

are of the same form, and the lift curve slopes are the same. There is very

little difference between the encounter rates of 3 or 5 waves per second, and

these differences can probably be attributed to experimental scatter.

5.6.1 THE EFFECT OF DEPTH - In all of the tests described in this report

the static depth of the 1/4-chord point of the foil was held steady at 1 chord,

with the exception of tests with flaps fixed in waves in a following sea. Figure

60 presents values of the average lift coefficient plotted against the non-dimen-

sional static depth of the foil (h/c) for all four flap configurations at a = 5° and

6f 100. As h/c drops from 1.25 to 0.75 the average CL falls about 10% for

all four flap configurations. It is not possible to exactly compare this data with

Figure 18 of Reference 1, because the Reference 1 plot is for Flap Configuration

2 only, at a = 20 and foil submergences (h/c) between 0.5 and 1.0. However,

considering this case with a flap deflection of 10 ° down, as h/c drops from 1.0

to 0. 5 the CL falls about 11%. Therefore, the foils running in waves exhibit

approximately the same reduction in average lift on approaching the mean water

surface as in the steady-state conditions.

5.7 COMPARISONS WITH REFERENCE 4

In Reference 4 (hydrofoils in regular waves tests) oscillatory lift parameter

was plotted against wave length in feet, and oscillatory drag parameter against

wave height. The plotting of the lift parameter against wave length had a theo-

retical basis, but the plotting of the drag parameter against wave height was

arbitrarily adopted, since this parameter had little dependence on wave length.
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In this report the only data obtained at a sufficiently large number of wave sizes

was for flaps fixed in waves in a following sea. From Reference 4:

Lm
Oscillatory lift parameter - 2 (Reference 4 symbols),

ab pV

t CLPVbc

-6C pV2  (symbols used in this report), and2AK • cpV2

AK 2

Similarly, oscillatory drag parameter

Figure 61 presents plots of

(CLi) b
AK

against wave length XK feet, and

(A1) b

against wave height in feet (trough to crest), for Flap Configuration 1 at two

speeds: 21 and 30 feet per second, and a = 50 , 6 1 = 100. As in Reference 4,

the oscillatory lift parameter is fairly constant, falling slowly with increase of

wave length. The actual values are lower, since the 16-309 is a low-lift, high-

speed section when compared with the Wright 1903 tested in Reference 4. The

oscillatory drag parameter falls with increase of wave-height; this is in opposi-

tion to Figure 10 of Reference 4. However, the drag change with wave is greater

at the lower speed, which agrees with Reference 4.
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5.8 ONE-HALF CYCLE TESTS IN SMOOTH WATER

Figures 68 through 76 present results of tests in which the flaps were driven

through one-half of one cycle at various frequencies to determine the effect of

sudden flap deflections on the hydrofoil forces and moments. Figure 77 pre-

sents a case where the flaps were driven through one complete cycle at 6.3

cycles/sec. These tests simulate sudden control motions which may occur dur-

ing the operation of a full-scale hydrofoil vehicle.

It is noted from the curves that there is always considerable over-swing of

CL and CM , and to a much lesser extend of CD . The maximum CL usually

occurs just before the maximum flap-down position, and the maximum CD and

CM just after maximum flap down. CM in particular does not become steady

until about 100% of the flap deflection time has elapsed, after the flap is fully

down. The overswing in CM may be up to 100% of the change resulting from

steady flap deflection.

Except for the very low cycling rate of 1. 6 cycles/sec., phase relationships

between the flap, and the hydrofoil forces and moments, do not seem to be much

affected by flap cycling rate within the range of frequencies tested. In the case

where the flap was moved through one complete cycle (see Figure 77 for results

on Flap Configuration 4), the peak values of CL , CD and CM all occurred after

the flap was in the full down position. As the flap returned to its original neutral

position, C and C returned smoothly to their original values without over-
L D

swing, but with CM there was again some overswing.M7

I
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6 1 RELIABILITY AND ACCURACY OF DATA

In general, the accuracy of the test points can be taken as +5%. However, the

accuracy of faired curves may be considerably better. The maximum frequency

of the transient loads and moments obtained in waves was approximately 7 cycles/

sec. The natural frequency of the complete model system was about 10 times

this value; consequently, the force and moment variations could be read with

good accuracy. Waves sometimes varied slightly both in height and length during

any one run; therefore, the data had to be averaged over three or more waves.

Because the flap and its drive mechanism deflected slightly under very heavy

loads, the flap deflection trace departed slightly at such times from a pure sinu-

soidal form. However, its frequency did not appear to vary. Flaps cycling in

wave tests gave oscillograph traces which were essentially transitory in nature

because of the different frequencies of the flap and the wave; consequently, this

data is probably less accurate than that obtained from the other tests. It was

read later, however, with the experience gained from reading all the earlier

data, and so this may have increased its accuracy somewhat. Also, the flap was

the stronger forcing function, and the flap trace was of more constant form than

the wave trace - giving greater overall accuracy.

Of all the traces, the pitching moment was the worst one from the stand-

point of harmonic distortion, especially with long waves in following seas. The

lift trace exhibited good sinusoidal form (as did the wave), but the drag trace

was masked by gage interactions. (See paragraph 4. 1, Section 4.)
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On page 11 of Reference 4 it is stated that an investigation was made of the

wave profile used as the forcing function in the experiments. A harmonic analy-

sis was made of several typical wave forms and a distortion of about 8 to 12%

was found in most cases. In Reference 4 a harmonic analysis was also made on

the lift traces.

No harmonic analysis was made on any of the data in this report. Conse-

quently, the values presented for lift, drag and pitching moment represent peak-

to-peak measurements taken directly from the records, rather than the maximum

amplitude of the fundamental. Average values are (Max. Value + Min. Value

In measuring phase angles it was found to be more difficult to measure drag

phase angles in following seas than in head seas because the peak position fluctu-

ated between waves. Therefore, it was rather difficult to select an average value.

Also, the peaks were not sharply defined, but spanned a considerable length on

the trace, and the midpoint fluctuated on each peak. In general, all phase angles

were found to be difficult to measure accurately because the peaks were often

not too clearly defined, and in flaps cycling in waves tests, phase relationships

were transitory. This is illustrated in Figure 67, which presents a typical oscil-

lograph record for flaps cycling in waves in a following sea. Note that the wave

trace is inverted in Figure 67. This is a case where the flap frequency is con-

siderably different from the wave frequency, and in three complete wave cycles

the phase of the flap to the wave has changed from "in phase" to "Tr lag" and back

again to "in phase".
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71 CONCLUSIONS

a. The oscillatory lift coefficients and the oscillatory drag coefficients

are not apparently affected by flap deflection or angle of attack within the range

-5 degrees to + 10 degrees.

b. The average values of lift, drag and pitching moment coefficients in

unsteady flow do not vary much from the equivalent steady-state conditions.

c. It is possible to isolate and evaluate the separate effects of flap and

wave motion, and then add these vectorially to get the combined effects of flap

and wave acting together.

d. For the range of flap sizes and waves tested, the flap is by far the more

powerful forcing function. Increase of flap chord has more effect than increase

of flap span.

e. Flap 1/2-cycle tests show overawing of the force and moment coeffi-

cients, with center of pressure still moving up to 100% of the flap movement

time beyond flap steady. There are varying phase relationships between force

and moment coefficients and the flap.

f. No cavitation or intermittent ventilation was observed at any time.
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9 1 NOMENCLATURE

U Model Velocity (Ft. /Sec.).

a Foil Angle of Attack (Degrees).

6f Flap Angle (Degrees).

6f Flap Angle (Radians).
T

A6 Flap, 1/2 Amplitude of Oscillation (Radians).

AK  Wave, 1/2 Amplitude (Ft.)

x K Wave Length (Ft.)

V Frequency of Wave Encounter (Rad. /Sec.).

V Wave Velocity (Ft. /Sec.).

w f Frequency of Flap Oscillation (Rad. /Sec.).

c Hydrofoil Chord (Ft.).

b Hydrofoil Span (Ft.).

c f Flap Chord (Ft.).

bf Flap Span (Ft.).

h Depth of Foil 1/4-Chord Pt. (Ft.).

H0  Depth of Foil 1/4-Chord Pt. (In.).

L Foil Lift Normal to Water Surface (Lb.).

D Foil Drag Parallel to Water Surface (Lb.).

P. M. Pitching Moment About Foil, 1/4-Chord Point,
Positive Leading Edge Up (Lb. /Ft.)
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p Water Density (Slugs/Ft. 3).

C Average Lift Coefficient, Flaps Fixed in Waves = L
L 1l/2p U 2 cb.D

C Average Drag Coefficient, Flaps Fixed in Waves =1/2p cb.

C M Average Pitching Moment Coefficient, Flaps Fixed in Waves
M1  P.M.

1/2p U2 c2b.
2 Average Lift Coefficient, Flaps Cycling in Smooth Water.

C L Average Drag Coefficient, Flaps Cycling in Smooth Water.

C D Average Pitching Moment Coefficient, Flaps Cycling in Smooth Water.

C L Average Lift Coefficient, Flaps Cycling in Waves.

C L Average Drag Coefficient, Flaps Cycling in Waves.

C D Average Pitching Moment Coefficient, Flaps Cycling in Waves.

ACL1 1/2 Amplitude of C L Fluctuation, Flaps Fixed in Waves.

AC 1/2 Amplitude of C Fluctuation, Flaps Fixed in Waves.

AC 1/2 Amplitude of C Fluctuation, Flaps Fixed in Waves.

AC L 1/2 Amplitude of C Fluctuation, Flaps Cycling in Smooth Water.

AC 1/2 Amplitude of C Fluctuation, Flaps Cycling in Smooth Water.

ACM2 1/2 Amplitude ofCM2 Fluctuation, Flaps Cycling in Smooth Water.

AC L 1/2 Amplitude of C Fluctuation, Flaps Cycling in Waves.
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ACD 3  1/2 Amplitude of CD3 Fluctuation, Flaps Cycling in Waves.

4C M3 1/2 Amplitude of CM3 Fluctuation, Flaps Cycling in Waves.

OL1  Phase Lag or Lead Angle of Max. CL1 to Wave Peak (Radians).

OD1  Phase (negative lag) or (positive lead) Angle of Max. CD 1 to Wave
Peak (Radians).

(M, Phase (negative lag) or (positive lead) Angle of Max. CM 1 to Wave
Peak (Radians).

OL2 Phase (negative lag) or (positive lead) Angle of Max. CL 2 to Max.
Flap Down (Radians).

OD2  Phase (negative lag) or (positive lead) Angle of Max. CD 2 to Max.
Flap Down (Radians).

OM2  Phase (negative lag) or (positive lead) Angle of Max. CM 2 to Max.
Flap Down (Radians).

OL3  Phase (negative lag) or (positive lead) Angle of Max. CL 3 to Wave
Peak (Radians).

OD3  Phase (negative lag) or (positive lead) Angle of Max. CD 3 to Wave
Peak (Radians).

OM3  Phase (negative lag) or (positive lead) Angle of Max. CM3 to Wave
Peak (Radians).

Of Phase (negative lag) or (positive lead) Angle of Max. Flap Down to
Wave Peak (Radians).

01 nstantaneous Phase of Flap to Wave, Referenced to Flap Frequency,
and Measured at t = 0.

t Time on Oscillograph Trace from Start of Time History (Seconds).

L 

A

Aa Lift Amplitude Ratio, Flaps Fixed in Waves.

3 Drag Amplitude Ratio, Flaps Fixed in Waves.
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CMI P. M. Amplitude Ratio, Flaps Fixed in Waves.

TfL)C Lift Amplitude Ratio, Flaps Cycling in Smooth Water.

CDrag Amplitude Ratio, Flaps Cycling in Smooth Water.

gP.M. Amplitude Ratio, Flaps Cycling in Smooth Water.
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Table 14. Flap Configuration 1; cf/c - 0.3, b
and Following Seas, Flaps Oscillati

Run Head Of CLMax" CLMin" ACL 3 CL 3  aL. CDMax" CDMin" "CD 3 CD 3  OD C1

No. Following Rads. Rads.

Sea

13154 Head -v/2 .52 .20 .16 .36 -2.36 .0400 .0131 .0134 .0266 -2.78 .

-7 .58 .15 .22 .36 +2.24 .0386 .0156 .0115 .0271 +1.96 -.

+Y/2 .60 .10 .25 .35 + .883 .0371 .0177 .0097 .0274 + .748-.

13157 lead + W .49 .18 .16 .33 + 2.375 .0366 .0134 .0116 .G250 -2.085-.

+ v/2 .57 .01 .26 .31 +1.41 .0350 .0155 .0098 .0232 +1.09 -.

13160 Head -v .44 .19 .13 .32 +2.50 .0410 .0109 .0150 .0260 +3.06

-w/2 .43 .27 .08 .35 -1.06 .0433 .0146 .0144 .0289 -1.90 -.

13167 Following + v/2 .35 .27 .04 .31 -2.52 .0412 .0197 .0107 .0305 +2.68 -.

+w .51 .09 .21 .30 -1.94 .0437 .A215 .0111 .0326 -2.90 -.

13182) Following -v .48 .07 .21 .28 -2.07 .0410 .0216 .0097 .0313 -2.79 -.

-v/2 .55 .10 .23 .32 -1.89 .0417 .0216 .0101 .0316 +1.32 .

13191 Following -w .50 .16 .17 .33 +1.23 .0418 .0207 .0105 .0313 +1.04 .

+r/2. .53 .20 .16 .36 +1.23 .0428 .0204 .0112 .0316 +2.11 .

-v/2 .60 .17 .21 .38 -1.70 .0435 .0200 .0117 .0318 -1.88 .



0. 3, bf/b =0. 6; Tests In Regular Head
Oscillating; Static h/c = 1. 0, a = 5

D C MMax CMMIn. LCM3  CM3  OMp Ft/Sc Rads ASc I d. Sc AK Af
a~s.Ra:B. t../Se. Rds.Sec Ras./ec. Ft. Ft. Rads.

!. 78 -. 061 -. 005 -. 028 -. 033 -3.14 23.80 49.4 46.1 3.65 .0628.148

L. 96 -. 063 -. 003 -. 030 -. 033 +1.354 23.90

.748 -. 069 -. 005 -. 032 -. 037 0 24.40

.085 -. 083 -. 028 -. 027 -. 056 +2.375 22.10 21.5 20.2 8.32 .157 .149

L. 09 -. 101 -. 007 -. 047 -. 054 +1.15 21.70

.06 -. 097 -. 026 -. 035 -. 062 +2.68 23.30 22.1 23.2 8.53 .163 .149

.90 -. 114 -. 021 -. 046 -. 068 -1.193 23.31

.68 -. 104 -. 009 -. 047 -. 057 -2.57 20.83 10.45 12.17 8.58 .157 .149

1.90 -. 080 -. 021 -. 029 -. 051 -1.965

.79 -. 090 -. 019 -. 035 -. 055- +2-.78.- 29.80 10.57 11.57 8.46 .154 .148

..32 -. 081 -. 016 -.032 --. 049 -2.06

.04 -. 114 -. 012 -. 051 -. 063 +0.44 21.57 29.6 39.5 3.66 .072 145

.11 .116 -.005 -.055 -061 +0.44

.. 88 .100 -.006 -.047 -.053 -2.38

51



I
Table 15. Flap Configuration 2; cf/c = 0.3, bf/b =

and Following Seas, Flaps Oscillating; E

Run Head or Of CLMax" CLMin" ACL 3 CL 3 RL CDm CDMi CD 3 CD3  OD CMM.
No. Following Rads. Ras..

Sea I
132401 Head -v/2 .55 .04 .25 .30 -1.98 .0372 .0131 .0120 .0252 -2.125 -.105

13248 Head + v .59 0 .29 .30 +2.36 .0385 .0136 .0125 .0260 +2.325 -.106

+ir/2 .63 -.05 .34 .29 + .83 .0400 .0142 .0129 .0271 + .472 -. 117

13256k Head -v/2 .39 .17 .11 .28 -1.13 .0376 .0136 .0120 .0256 -1.775 -.124

13260 Head +r .48 - .02y <23 .25 +2.74 .0340 .0147 .0096 .0244 +2.54 -.126

+/2 .58 -. 05 .32 .26 +3.33 .0365 .0131 .0117 .0248 + .942-.136

13284 Following -x/2 .51 .01 .25 .26 -1.79 . 0357 .0194 .0082 .0275 -1.!!14 -. 093

-T .49 .02 .24 .25 -2.07 .0401 .0204 .0098 .0303 +2.46 -. 091

13302 Following + v/2 .39 .18 .10 .29 +1.63 .0441 .0178 .0132 .0309 + 1.315 - .11S

133081 Following -ir/2 .58 -. 01 .29 .29 -1.79 .0311 .0131 .0090 .0221 -1.10 - .137

13310 Following -i .57 .04 .27 .30 +1.87 .0375 .0136 .0119 .0256 +2.80 - .138

+r/2 .52 .07 .22 .30 +1.23 .0396 .0143 .0126 .0270 + .868- .143



=0. 3. bf/b =0. 8; Te~sts in Regular Head
Oscillating; Static h/c = 1. 0, a= 50

0D CMMax. CMMin. ACM 3  CM 3  oM UGO p WfX AK af
Rags. Racik. Ft. /Sec. Rads. /Sec. Rads. /See. Ft. Ft. Rads.

-2.125 -. 105 -. 001 -. 052 -. 053 -3.18 23.12 46.9 45.2 3.67 .06G6 .160

j-2.325 -. 106 -. 011 -. 047 -. 059 +1.56 22.73 46.5 44.8 3.63 .063 .159

I.472 -. 117 -. 003 --. 057 - -. 060-- -7.29 -

-1.775 -. 124 +.012 -. 068 -. 056 -1.80 22.64 22.4 27.2 8.16 .165 .160

~2.54 -. 126 -. 081 -. 023 -. 103 +2.85 22.02 22.1 23.5 8.11 .167 .160
.942 -. 136 -. 010 -. 063 -. 073 +1.16

-1.214 -. 093 -. 006 -. 043 -. 050 -1.74 21.38 11.31 10.46 8.27 .166 .162

-2.46 -. 091 -. 002 -. 045 -. 046 -2.67

~1. 315 - .119 -. 009 -. 055 -. 064 +1 47 21.74 11.73 12.55 8.15 .140 .163

-1.10 - .137 +.012 -. 075 -. 062 -2.44 21.83 30.0 35.8 3.67 .075 .158

~2.80 - .138 +.025 -. 082 -. 056 +1.24 21.33 30.3 34.9 3.54 .068 .158
.868 - .143 +.021 -. 082 -. 061 + .54

53



I
Table 16. Flap Configuration 3; Cf/c - 0.2; bf/b -

and Following Seas, Flaps Oscillating; I

Run Head or Of CLMax" CLMin. ACL 3 CL 3  s C. C CD3 CMMax
No. Following Rads. a

Sea

12702 Head -r .35 .22 ,06 .29 +1.955 .0282 .0171 .0056 .0226 +2.89 -. 031

12704 Head -v/2 .39 .19 .10 .29 + .116 .0261 .0172 .0044 .0217 -1.40 -. 068

12706 Head + r/2 .44 .17 .14 .30 + 1.529 .0287 .0162 .0063 .0224 +1.39 -. 044

12760 Head + v/2 .47 .14 .17 .30 + .911.0267 .0181 .0043 .0224 +1.57 -.058

12762 Head -w/2 .39 .21 .09 .30 + 2.710 .0264 .0132 .0066 .0198 -2.365 -.047

-w .48 .16 .16 .32 +1.657 .0323 .0211 .0056 .0267 +2.02 -.040

12778 Following + v/2 .30 .26 .02 .28 + 2.074 .0301 .0167 .0067 .0234 + .4151 -. 067

12784 Following + r .39 .17 .11 .28 -2.154 .0254 .0199 .0028 .0226 + 1.632 -. 065

12824 Following + r/2 .35 .24 .05 .30 - .347 .0318 .0175 .0072 .0246 + .316 -. 073

12849 Following -v/2 .42 .16 .13 .29 -2.079 .0276 .0156 .0060 .0216 -2.44 -. 060

-7 .41 .17 .12 .29 + 3.095 .0263 .0194 .0035 .0228 +2.41 -. 066

+ r/2 .37 .24 .07 .30 + 1.032 .0253 .0206 .0024 .0229 - .698 -. 061



0. 2; bf/b= 0. 6; Tests in Regular Head
3 Oscillating; Static h/c =1.0; a =5*

D CmM CMM0 CIW 4 /e.Rd. Rd.Sc AK AX 6 fMa.C *n &M M MF.Sc tf.e.Rd.Sc Ft. Ft. Rads.

2.89 -. 031 -. 014 -. 009 -. 022 +2.066 30.77 28.4 29-.75 8.24 .157 .169

1.40 -. 068 +.013 -. 040, -. 028 - .781 30.46 26.7 29.9 8.74 .150 .167

1.39 -. 044 +.003 -. 024 -. 020 +1.119 29.26 27.65 29.6 8.11 .164 .169

1.57 -. 058 -. 015 -. 022 -. 036 - .288 22.90 46.8 47.2 3.65 .065 .127

3.365 -. 047 -. 032 -. 007 -. 040 -1.892 21.71 43.3 47.5 .3.79 .064 .124
.02 -. 040 -. 020 -. 010 -. 030 + .741

.415-.067 -. 016 -. 025 -. 042 +1.566 30.48 18.3 .18.95 8.25 .158 .127

1.632 -. 065 -. 013 -. 026 -. 039 -2.428 30.61 38.85 19.0 8.07 .150 .128

.316 -. 073 -. 025 -. 024 -. 049 + .-539 30.50 19.0 20.7 7.99 .161 .124

!-44 -. 060 -. 015 -. 022 -. 038 -2.800 30.37 43.3 42.0 3.77 .066 .126
?. 41 -. 066 -. 019 -. 024 -. 042 +1.705

.6981--.061 -. 020 -. 021 -. 040 0
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- - Table 17. Flap Configuration 4; cf/c = 0.2. br - 0.8
and Following Seas, Flaps Oscillating; Sta

'un Head or Af CLM CLMIn" ACL 3 CL3 1a s CDMaxCD. n ACD3 C 3  MaC .
ro. Following Rads. Rags. Racs.Sea

2996 Head + v/2 .47 .13 .17 .30 +1.174 .0268 .0198 .0035 .0233 +..328 -. 088

2999 Head -W/2 .36 .26 .05 .31 -1.011 .0277 .0189 .0044 .0233 -2.01 -. 072

:3002) Head - . 41 .17 .12 .29 + 1.708 .0264 .0132 .0066 .0198 +2.28 -. 069

3012 Head + v/2 .50 .13 .18 .32 +1.024 .0269 .0157 .0056 .0213 + .752 -. 058
+1 .47 .14 .17 .30 +1.714 .0291 .0146 .0073 .0218 +1.99 -. 066
-v/2 .42 .21 .11 .31 -2.405 .0263 .0160 .0052 .0211 -3.47 -. 062

'005 Head -r/2 .39 .24 .07 .32 -2.173 .0286 .0203 .0042 .0244 -3.46 -. 065

1008) +wr/2 .50 .11 .20 .3C + .879 .0341 .0208 .0066 .0275 + .72 -. 068

!965) Following -w/2 .45 .15 .15 .30 -1.294 .0292 .0199 .0046 .0246 -2.68 -. 072

!967 Fol• w-i -v .39 .17 .11 .28 -2.261 .0311 .0206 .0055 .0262 +1.57 -. 082

!990 Following + ar/2 .41 .22 .10 .31 - .320 .0359 .0175 .0092 .0267 + .274 -. 033

!947 Following -v/2 .45 .13 .16 .29 -2.003 .0322 .0188 .0067 .0255 -2. 295 -. 073
+ .39 .18 .10 .29 +2.493 .0292 .0196 .0048 .0244 + 1.385 -.081

!952) Following + w/2 .4) .19 .11 .30 + .553 .0333 .0191 .0071 .0262 + .128 -073



=0. 2, bf 0. 8; Tests in Regular Head
;Oscillating; Static h/c = 1. 0, ct = 5

Ralis a m Racis. Ft. /See. Ras/Sec. Rads. /Sec. 'Ft. Ft. Rads.

... 328 -. 088 0 -. 044 -. 044 +-.411 34.20 31.4 32.2 8.41 .173 .124

-2.01 -. 072 -. 017 -. 027 -. 045 -2.173 34.50 30.2 33.4 8.55 .173 .120

1-2.28 -. 069 -. 010 -. 029 -. 040 +1.130 32.60 28.9 34.1 8.53 .176 .119

.752 -. 058 -. 038 -. 010 -. 048 + .578 20.93 43.3 49.0 3.66 .068 .120
1.99 -. 066 -. 048 -. 009 -. 057 +1.218

-3.47 -. 062 -. 054 -. 004 -. 058 +2.229

-3.46 -. 065 -. 040 -. 012 -. 053 -3.303 21.90 45.2 46.9 3.64 .064 .120

- .72 -. 068 -. 032 -. 018 -. 050 +.259 22.70 48.0 46.2 3.53 .073 .119+

-2.6G8 -. 072 -. 012 -. 030 -. 042 -1.595 30.60 17.6 17.4 8.53 .161 .127

1.57 -. 082 -. 012 -. 035 -. 047 +2.744 31.30 18.3 20.3 8.49 .160o .124

.274 - .033 -. 005 -. 014 -. 019 .553 29.80 17.7 13.6 8.27 .163 .124

-2.295 -. 073 -. 010 -. 031 -. 042 -3.184 29.65 39.0 39.2 4.04 .065 .128
1.385 -. 081 +.001 -. 041 -. 040 +1.532

.128 -. 073 -. 021 -. 026 -. 047 0 29.10 44.5 39.7 3.51 .065 .124
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20FLAP CONFIGURATION NO.1 I
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Figure 3. Lift Frequency Response,
Flaps Oscillating, Smooth Water
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2.0 
FLAP CONFIGURATION NO. 3

AC L2
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FLAP CONFIGURATION NO. 4

2.0 __ ___ __ ___

L2

8f 1.0 _______

-0.2 ___ ___

0 L2 -0.4

RA.-0.6__ _ _ _ _ _ _ _

0 5 10 15 20 25 30 35 40 45

wf- RA./SEC.

Figure 4. Lift Frequency Response,
Flaps Oclaing, Smooth Water
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______FLAP CONFIGURATION NO. 1
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Figure 5. Drag Frequency Response,
Flaps Oscillating, Smooth Water
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_______FLAP CONFIGURATION NO. 3
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Figure 6. Drag Frequency Response,
Flaps Oscillating, Smooth Water
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FLAP CONFIGURATION NO. 1
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Figure 7. Pitching Moment Frequency Response,
Flaps Oscillating, Smooth Water
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ACM2 0.8

0.6

0.4 _ _ _ _ _ _ _

0.2 A- -- 6-.

0

-0.4

0M 2 -0.8___

RAD. -1.2

0 5 10 15 20 25 30 35 40 45

Wf RAD./SEC.

0.66



0.14 _FLAP CONFIGURATION NO. 1
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Figure 9. Lift Frequency Response, Head Seas, Flaps Fixed
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0.14 - _____ ____________FLAP CONFIGURATION NO. 3
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Figure 10. Lift Frequency Response, Head Seas, Flaps Fixed
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Figure 11. Drag Frequency Response, Head Seas, Flaps Fixed
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Figure 12. Drag Frequency Response, Head Seas, Flaps Fixed
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Figure 13. Pitching Moment Frequency Response, Head Seas, Flaps Fixed
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Figure 14. Pitching Moment Frequency Response, Head Seas, Flaps Fixed
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Figure 15. Lift Frequency Response, Following Seas, Flaps Fixed
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FLAP CONFIGURATION NO. 1
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Figure 17. Drag Frequency Response, Following Seas, Flaps Fixed
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Figure 18. Drag Frequency Response, Following Seas, Flaps Fixed
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Figure 19. Pitching Moment Frequency Response,
Following Seas, Flaps Fixed
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Figure 20. Pitching Moment Frequency Response,
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Figure 21. Flaps Configuration 1 - Mean Values of Force Coefficients, Flaps
Cycling in Smooth Water
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Figure 22. Flap Configuration 2 - Mean Value of Force Coefficients, Flaps
Cycling in Smooth Water
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0.8 STEADY-STATE VALUES FROM REF. J
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Figure 27. Flap Configuration 2 - Mean Values of Force Coefficients,
Flaps Fixed in Waves
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Figure 28. Flap Configuration 3 - Mean Values of Force Coefficients,
Flaps Fixed in Waves
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Figure 29. Flap Configuration 4 - Mean Values of Force Coefficients,
Flaps Fixed in Waves
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Figure 30. Mean Pitching Moment Coefficients - All Models,
Flaps Fixed in Waves
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Figure 31. Mean Values of Lift Coefficients - All Models,
Flaps Cycling in Waves, a - 50
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Figure 32. Mean Values of Drag Coefficients - All Models,
Flaps Cycling in Waves, ci - 5o
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Figure 34. Flap Configuration 1 - Maximum and Minimum CL
Vs. Phase of Flap to Wave
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Figure 35. Flap Configuration 2 - Maximum and Minimum CL
Vs. Phase of Flap to Wave
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Figure 36. Flap Configuration 3 - Maximum and Minimum CL
Vs. Phase of Flap to Wave
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Figure 37. Flap Configuration 4 - Maximum and Minimum CL

Vs. Phase of Flap to Wave
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Figure 38. Flap Configuration 1 - Maximum and Minimum CD

Vs. Phase of Flap to Wave
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Figure 39. Flap Configuration 2 - Maximum and Minimum CD
Vs. Phase of Flap to Wave
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Figure 40. Flap Configuration 3 - Maximum and Minimum CD
Vs. Phase of Flap to Wave
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Figure 41. Flap Configuration 4 - Maximum and Minimum C D
Vs. Phase of Flap to Wave
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Figure 42. Maximum -C Vs. Phase of Flap to Wave
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(~/AS BELOW)
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2AC L DUE TO WAVES
3 AC LDUE TO FLAPS

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
TIME - SECONDS

Figure 44. Run 13191, Flap Configuration 1 - CL
Time History, Following SeaL

FLAPS CYCLING IN WAVES____
II I

1 C D SMOOTH WATER (FLAPS FIXED)-REF. 1
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0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
TIME - SECONDS

Figure 45. Run 13191, Flap Configuration 1 - CD
Time History, Following Sea

102
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. I- FLA'S CYCLING /I____Nw,__. /
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2 ACM DUE TO WAVES
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-0.20

Figure 46. Run 13191, Flap Configuration 1 - CM
Time History, Following Sea
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TIME - SECONDS

Figure 47. Run 13191, Flap Configuration 1 - CL Time History,
Comparison of Flap and Wave Effects
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3 AC L DUETOFLAPS

0I I I __

0 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40
TIME - SECONDS

Figure 48. Run 13157, Flap Configuration 1 - CL

Time History, Head Sea
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CD SUMMATING SEPARATE C OMPONENTS
(AS ABOVE)

0.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

TIME - SECONDS

Figure 49. Run 13157, Flap Configuration 1 - CD
Time History, Head Sea
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I
FLAPS CYCLING IN WAVES FLAP LEADING WAVE '/2 RAD.
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L3 CM DUE TO FLAPS
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I I
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Figure 50. Run 13157, Flap Configuration 1 - CM

Time History, Head Sea
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I I 1 1
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Figure 51. Run 13154, Flap Configuration 1 - CL
and CD Time History, Head Sea
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Figure 52. Run 13154, Flap Configuration 1 - CL
and CD Time History, Head Sea
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Figure 53. Run 13154, Flap Configuration 1 - CM
Time History, Head Sea
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A HEAD SEAS (FLAPS CYCLING)
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FLAPS AND WAVE
0 FOLLOWING SEAS (FLAPS CYCLING)
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FLAP AND WAVE
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Figure 54. Maximum Lift Frequency Response, Flaps Oscillating in Waves,
All Models - Comparisons with Separate Tests
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Figure 55. Summary of Flap and Wave Effectiveness
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Figure 56. Mean Values of Lift Coefficients -- All Models
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Figure 57. Mean Values of Drag Coefficients - All Models
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Figure 58. Average CL Vs. a, Flaps Fixed in Waves,
and Smooth Water (Ref. 1)
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Figure 59. Average CD Vs. a, Flaps Fixed in Waves,
and Smooth Water (Ref. 1)
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Figure 60. Effect of Depth on Average CL, Flaps
Fixed in Waves, Following Sea
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Figure 61. Flap Configuration 1 - Oscillatory Lift and Drag Parameters,
Flaps Fixed in Waves, Following Sea
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Figure 63. Flap Configuration 2,Phase Relationships - Flaps
Cycling in Waves, Head Sea
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Figure 64. Flap Configuration 3,Phase Relationships - Flaps
Cycling in Waves, Head Sea
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Figure 65. Flap Configuration 4,Phaue Relationships - Flaps
Cycling in Waves, Following Sea
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Figure 66. Flap Configuration 2,Phase Relationships - Flaps
Cycling in Waves, Following Sea
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Figure 69. Sudden Flap Deflection, Time History of Force and Moment
Build-up - Flap Configuration 1
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Figure 72. Sudden Flap Deflection, Time History of Force and Moment
Build-Up - Flap Configuration 2, Run 13210
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Figure 73. Sudden Flap Deflection, Time History of Force and Moment Build-Up
- Flap Configuration 2, Run 13219, 6.5 CPS Flap Cycling Rate
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Figure 74. Suddn Flap Deflection, Time History of Force and Moment
Build-Up - Flap Configuration 3
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Figure 76. Sudden Flap Deflection, Time History of Force and Moment
Build-up - Flap Configuration 4
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Figure 77. Sudden Flap Deflection, Time History of Force and Moment
Build-up - Flap Configuration 4, Run 12895, 6.3 CPS
Flap Cycling Rate
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